ENGINEERING (COURSE 10-ENG)

Department of Chemical Engineering (http://catalog.mit.edu/ schools/engineering/chemical-engineering/#undergraduatetext)

Bachelor of Science in Engineering

General Institute Requirements (GIRs)

The General Institute Requirements include a Communication Requirement that is integrated into both the HASS Requirement and the requirements of each major; see details below.

Summary of Subject Requirements	Subjects
Science Requirement	6
Humanities, Arts, and Social Sciences (HASS) Requirement; at least two of these subjects must be designated as communication-intensive (CI-H) to fulfill the Communication Requirement.	8
Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 10.301 and 18.03 in the Departmental Program]	2
Laboratory Requirement (12 units) [can be satisfied by 1.106/1.107, 2.671, 3.010 AND 3.020, 5.310, or 12.335 in the Departmental Program]	1
Total GIR Subjects Required for SB Degree	17

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points.

Departmental Program

Choose at least two subjects in the major that are designated as communication-intensive (CI-M) to fulfill the Communication Requirement.

ts	Units
Thermodynamics I	6
Introduction to Chemical Engineering	12
Chemical and Biological Engineering Thermodynamics	12
Fluid Mechanics	12
Transport Processes	12
Chemical Kinetics and Reactor Design	12
Differential Equations	12
	Thermodynamics I Introduction to Chemical Engineering Chemical and Biological Engineering Thermodynamics Fluid Mechanics Transport Processes Chemical Kinetics and Reactor Design

Foundational Concepts

All subjects are suitable for any concentration within 39-45 the program. In consultation with the advisor, students select one subject from each of the three groups. Students may not exceed the 45-unit cap except by petition.

Group I

Select one of the following Course 10 CI-M subjects:			
10.26	Chemical Engineering Projects Laboratory (CI-M)		
10.27	Energy Engineering Projects Laboratory (CI-M) ¹		
10.28	Chemical-Biological Engineering Laboratory (CI-M)		
10.29	Biological Engineering Projects Laboratory (CI-M) ²		
10.467	Polymer Science Laboratory (CI-M) ³		
Group II			
Select one of the following Institute Laboratory			

subjects:	
1.106 & 1.107	Environmental Fluid Transport Processes and Hydrology Laboratory and Environmental Chemistry Laboratory (CI-M) ⁴
2.671	Measurement and Instrumentation (CI-M)
5.310	Laboratory Chemistry (CI-M)
7.002	Fundamentals of Experimental Molecular Biology
10.7003[J]	Applied Molecular Biology Laboratory
12.335	Experimental Atmospheric Chemistry (CI-M) ⁴
20.109	Laboratory Fundamentals in Biological Engineering (CI-M) ²

Group III		
Select one of the following:		
1.00	Engineering Computation and Data Science	
1.018[J]	Fundamentals of Ecology	
1.080	Environmental Chemistry	
3.155[J]	Micro/Nano Processing Technology (CI-M) ³	
5.12	Organic Chemistry I	
5.611 & 5.612	Introduction to Spectroscopy and Electronic Structure of Molecules	
6.100A & 6.100B	Introduction to Computer Science Programming in Python and Introduction to Computational Thinking and Data Science	

7.03	Genetics ²
8.21	Physics of Energy ¹

Engineering Concentration

These four electives define a concentrated area
of study in one of the following designated
concentrations: Biomedical Engineering; Energy;
Engineering Computation; Environmental Studies;
Manufacturing Design; Materials Process and Design;
Process Data Analytics; or Society, Engineering and
Ethics. ⁵

Capstone

Select one of the following options to obtain 12 units of capstone experience: Senior Thesis, Integrated Chemical Engineering or Integrated Chemical Engineering Topics modules, or Senior Project.

 ignicering top	ics inductes, or semor rioject.
Option 1	
10.THU	Undergraduate Thesis
Option 2	
Select any cor	mbination of the following:
10.490	Integrated Chemical Engineering ⁶
10.492A	Integrated Chemical Engineering Topics I
or 10.492B	Integrated Chemical Engineering Topics I

01 10.4926	integrated Chemical Engineering Topics I
10.493	Integrated Chemical Engineering
	Topics II
10.494A	Integrated Chemical Engineering
	Topics III

or 10.494B Integrated Chemical Engineering Topics III

Option 3	
10.910	Independent Research Problem
and select any	combination of the following:
10.492A	Integrated Chemical Engineering Topics I
or 10.492B	Integrated Chemical Engineering Topics I
10.493	Integrated Chemical Engineering Topics II
10.494A	Integrated Chemical Engineering Topics III
or 10.494B	Integrated Chemical Engineering Topics III

Total Units Beyond the GIRs Required for SB Degree	180-195
Units in Major That Also Satisfy the GIRs	(36)
Unrestricted Electives	48
Units in Major	168-183

The units for any subject that counts as one of the 17 GIR subjects cannot also be counted as units required beyond the GIRs.

- Subject may be of particular interest for energy concentration.
- ² Subject may be of particular interest for biomedical engineering concentration.

- Subject may be of particular interest for materials process and design concentration.
- Subject may be of particular interest for environmental studies concentration.
- In all cases, the electives must be chosen with the approval of the student's advisor and the department. The combined list of required and elective subjects must sum to a minimum of 135 units in engineering topics (equivalent to 45 credit hours as defined by ABET). Lists of recommended subjects for each concentration are available from the department, and additional information on current subject offerings is available on the Chemical Engineering Department website (https://cheme.mit.edu/academics/course-listing). Note that subjects that have been used to satisfy the foundational concepts may not also be counted toward the engineering concentration.
- 6 10.490 may be repeated once for credit with permission of instructor.

12