MECHANICAL ENGINEERING (COURSE 2)

Department of Mechanical Engineering (http://catalog.mit.edu/ schools/engineering/mechanical-engineering/#undergraduatetext)

Bachelor of Science in Mechanical Engineering

General Institute Requirements (GIRs)

The General Institute Requirements include a Communication Requirement that is integrated into both the HASS Requirement and the requirements of each major; see details below.

Summary of Subject Requirements	Subjects
Science Requirement	6
Humanities, Arts, and Social Sciences (HASS) Requirement; at least two of these subjects must be designated as communication-intensive (CI-H) to fulfill the Communication Requirement.	8
Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 2.001 and 18.03 in the Departmental Program]	2
Laboratory Requirement (12 units) [can be satisfied by 2.671 in the Departmental Program]	1
Total GIR Subjects Required for SB Degree	17

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points.

Departmental Program

Choose at least two subjects in the major that are designated as communication-intensive (CI-M) to fulfill the Communication Requirement.

Required Core S	Subjects	Units
2.001	Mechanics and Materials I	12
2.002	Mechanics and Materials II	12
2.003[J]	Dynamics and Control I	12
2.004	Dynamics and Control II	12
2.005	Thermal-Fluids Engineering I	12
2.006	Thermal-Fluids Engineering II	12
2.007	Design and Manufacturing I	12
or 2.017[J]	Design of Electromechanical Robotic System	S
2.008	Design and Manufacturing II	12
2.086	Numerical Computation for Mechanical Engineers	12
2.670	Mechanical Engineering Tools ¹	3
2.671	Measurement and Instrumentation (CI-M)	12

То	tal Units Beyo	nd the GIRs Required for SB Degree	189-192
Un	its in Major Th	at Also Satisfy the GIRs	(36)
Un	restricted Elec	ctives ³	48
	its in Major		177-180
	2.C01 & 6.C01	Physical Systems Modeling and Design Using Machine Learning and Modeling with Machine Learning: from Algorithms to Applications	
	2.96	Management in Engineering	
	2.853	Introduction to Manufacturing Systems	
	2.813	Energy, Materials, and Manufacturing	
	2.797[J]	Molecular, Cellular, and Tissue Biomechanics	
	2.782[J]	Design of Medical Devices and Implants	
	2.744	Product Design	
	2.71	Elements of Mechanical Design	
	2.650[J]	Introduction to Sustainable Energy Optics	
	2 650[1]	Conversion Introduction to Sustainable Energy	
	2.60[J]	Fundamentals of Advanced Energy	
	2.51	Intermediate Heat and Mass Transfer	
	2.184	Biomechanics and Neural Control of Movement Fundamentals of Nanoengineering	
	2.14	Analysis and Design of Feedback Control Systems	
	2.12	Introduction to Robotics	
	2.050[J]	Nonlinear Dynamics: Chaos	
	2.019	Design of Ocean Systems (CI-M)	
	2.017[J]	Design of Electromechanical Robotic Systems	
	2.016	Hydrodynamics	
	2.014	Engineering Systems Development	·
ie	lect two of the	following: 1	24
₹e	stricted Electiv	J J, ,	
	2.750[J] 2.760	Global Engineering (CI-M)	
	2.013	Engineering Systems Design (CI-M) Medical Device Design (CI-M)	
	2.009	The Product Engineering Process (CI-M)	
ìе	lect one of the	following:	12-15
8	.03	Differential Equations	12

The units for any subject that counts as one of the 17 GIR subjects cannot also be counted as units required beyond the GIRs.

- Consult the MechE Undergraduate Office, Room 1-110, regarding substitutions.
- To encourage more substantial research, design, or independent study, the department permits up to 15 units of 2.THU credit, subject to approval of the student's thesis advisor.
- The department suggests that students select a basic electronics subject (e.g., 2.678, 6.2000, or 22.071) as early as possible in their program.