MINOR IN ENVIRONMENT AND SUSTAINABILITY

Open to all MIT undergraduates in any major, the Environment and Sustainability Minor (E&S Minor) offers students the opportunity to apply their STEM and major-course knowledge to some of the most critical and challenging problems facing humanity. The minor equips students with interdisciplinary knowledge and real-world experience needed to understand, diagnose, and develop solutions to complex problems faced by society as it strives for social and environmental sustainability. Students tailor their MIT education to their professional goals, preparing to apply the principles of sustainability in diverse workplace contexts, including business/ industry, government, civil society, and academia.

The E&S Minor combines a wide range of fields of inquiry to directly engage environmental and climate challenges facing ecosystems and populations around the globe. Fundamentally, these challenges affect both human systems and the earth systems on which we depend. Planetary challenges include climate change, risks to oceans and forests, degradation to both biodiversity and material resources, and fundamental transformations of biogeochemical cycles. Challenges facing society include widespread and intransigent environmental injustice, expanding urban and agricultural pollution, technological and economic lockin of infrastructure and all manner of production and consumption systems, and a global dependence on carbon intensive energy.

The minor prioritizes integrative, interdisciplinary learning that is critical for effectively understanding and addressing the complexities of environmental issues today and in the future, and is structured on four pillars: Earth Systems and Climate Science, Environmental Governance, Environmental Histories and Cultures, and Engineering for Sustainability. Upon completion of the minor, students will have achieved learning outcomes in seven categories: Systems Thinking; Sustainable Design Skills; Applied Sustainable Solutions; Know Your Planet; Social Context; Ethical Decision-making; and Impactful Communication.

The E&S Minor is comprised of five to six subjects, for a minimum of 57 units:

- One foundational subject (12.387[J] People and the Planet: **Environmental Governance and Science)**
- Subjects in two core required areas of study: 1) Context and Perspective and 2) Sustainable Solutions
- 24 units of elective subjects, reflecting the student's particular interests.

Environment and	Sustainability	Foundation
-----------------	----------------	------------

12.387[J]	People and the Planet:	9
	Environmental Governance and	
	Science	

Context and Perspective

S	elect one of the	r following: 1,2,3	12
	11.169	Global Climate Policy and Sustainability	
	21A.312	Planetary Change and Human Health	
	21A.410	Environmental Struggles	
	21H.185[J]	Environment and History	
	21H.186	Nature and Environment in China	
	21H.187	US Environmental Governance: from National Parks to the Green New Deal	
S	ustainable Sol	utions	
S	elect one of the	following: 1,2,3	12
	1.006	Tools for Sustainable Design	
	2.722[J]	D-Lab: Design	
	11.025[J]	D-Lab: Development	
	EC.715	D-Lab: Water, Sanitation and Hygiene	
	EC.719	D-Lab: Water, Climate Change, and Health	
El	lectives		
	elect a minimu elow: ^{1,2,3}	m of 24 units from the categories	24
	Discovery		
	1.008	Engineering for a Sustainable World	
	1.009	Climate Change	
	1.091	Traveling Research Environmental eXperience (TREX): Fieldwork	
	2.00C[J]	Design for Complex Environmental Issues ⁴	
	2.981	New England Coastal Ecology	
	3.002	Materials for Energy and Sustainability	
	12.000	Solving Complex Problems ⁴	
	12.12	Nature's Sandbox: The History of Ancient Environments, Climate, and Life	
	SP.310	Engagement and Discovery Through the Terrascope Field Experience ⁴	
	SP.360	Terrascope Radio ⁴	
	SP.361	Majors and Careers Through a Terrascope Lens ⁴	
	Applied Probl	lem Solving	
	1.004	Startup Sustainable Tech	
	1.013	Senior Civil and Environmental Engineering Design	
	1.020	Engineering Sustainability: Analysis and Design	
	1.102	Introduction to Civil and Environmental Engineering Design II	

Environmental Chemistry Laboratory

1.107

2.00A	Designing for the Future: Earth, Sea,	22.04[J]	Social Problems of Nuclear Energy
2.651[J]	and Space Introduction to Energy in Global	24.03	Good Food: The Ethics and Politics of Food
2.051[J]	Development	24.07	1000
4.218	Disaster Resilient Design	24.191	Being, Thinking, Doing (or Not):
4.411[J]	D-Lab Schools: Building Technology	-49-	Ethics in Your Life
	Laboratory	STS.032	Energy, Environment, and Society
10.496[J]	Design of Sustainable Polymer	WGS.160[J]	Science Activism: Gender, Race, and
44.007	Systems Urban and Environmental Technology	W00 [1]	Power
11.007	Implementation Lab	WGS.275[J]	Gender, Race, and Environmental Justice
11.173[J]	Infrastructure Design for Climate Change	Life and Ecol	
12.307	Weather and Climate Laboratory	1.089	Earth's Microbiomes
12.335	Experimental Atmospheric Chemistry	7.30[J]	Fundamentals of Ecology
15.772[J]	D-Lab: Supply Chains	12.007	Geobiology: History of Life on Earth
22.033	Nuclear Systems Design Project	21A.303[J]	The Anthropology of Biology
	d Global Systems	Materials an	d Material Culture
	Environmental Policy and Economics	1.035	Mechanics of Materials
14.42	·	3.081	Industrial Ecology of Materials
14.43[J]	Economics of Energy, Innovation, and Sustainability	3.094	Materials in Human Experience
14.44[J]	Energy Economics and Policy	3.19	Sustainable Chemical Metallurgy
15.8731	System Dynamics: Tools for Solving	3.982	The Ancient Andean World
15.0/51	Complex Problems	3.983	Ancient Mesoamerican Civilization
21H.383	Technology and the Global Economy,	4.657	Design: The History of Making Things
1000-2000		Media, Comr	nunications, and Literature
IDS.437[J]	Technology, Globalization, and	21L.449	The Wilds of Literature
	Sustainable Development	21W.012	Writing and Rhetoric: Food for
Energy x Sus	stainability	NA	Thought
3.18	Materials Science and Engineering of Clean Energy	21W.036	Science Writing and New Media: Writing and the Environment
5.371	Continuous Flow Chemistry:	21W.775	Writing about Nature and
	Sustainable Conversion of Reclaimed		Environmental Issues
8.21	Vegetable Oil into Biodiesel Physics of Energy	CMS.374[J]	Transmedia Art, Extraction, and Environmental Justice
10.04	A Philosophical History of Energy	CMS.375	Reading Climate Through Media
10.04	Foundational Analyses of Problems in	STS.034	Science Communication: A Practical Guide
	Energy and the Environment	Negotiations	, Politics, and Policy
10.390[J]	Fundamentals of Advanced Energy Conversion	11.003[J]	Methods of Policy Analysis
22.081[J]	Introduction to Sustainable Energy	11.011	The Art and Science of Negotiation
IDS.521[J]	Energy Systems for Climate Change Mitigation	12.385	Science, Politics, and Environmental Policy
Ethics and Just Futures		17.181	Sustainability: Political Economy,
6.9320 Ethics for Engineers			Science, and Policy
11.148	Environmental Justice: Law and	17.30[J]	Making Public Policy
	Policy	17.309[J]	Science, Technology, and Public
21A.155	Food, Culture, and Politics		Policy

IDS.060[J]	Environmental Law, Policy, and Economics: Pollution Prevention and Control
IDS.061[J]	Regulation of Chemicals, Radiation, and Biotechnology
IDS.062[J]	Global Environmental Negotiations
Planet Earth	and Climate Science
1.061	Transport Processes in the Environment
1.061A	Transport Processes in the Environment I
1.071[J]	Global Change Science
1.080	Environmental Chemistry
1.085[J]	Air Pollution and Atmospheric Chemistry
12.001	Introduction to Geology
12.002	Introduction to Geophysics and Planetary Science
12.003	Introduction to Atmosphere, Ocean, and Climate Dynamics
12.021	Earth Science, Energy, and the Environment
12.086	Modeling Environmental Complexity
12.104	Geochemistry of Natural Waters
12.301	Climate Science
12.306	Atmospheric Physics and Chemistry
12.349	Mechanisms and Models of the Global Carbon Cycle
12.372	Elements of Modern Oceanography
12.377	The History of Earth's Climate
12.390	Fluid Dynamics of the Atmosphere and Ocean
18.352[J]	Nonlinear Dynamics: The Natural Environment
The Built Env	ironment
4.211[J]	The Once and Future City
4.401	Environmental Technologies in Buildings
4.432	Modeling Urban Energy Flows for Sustainable Cities and Neighborhoods
11.113	The Economic Approach to Cities and Environmental Sustainability
11.123	Big Plans and Mega-Urban Landscapes
11.149	Decarbonizing Urban Mobility
11.158	Behavioral Science, AI, and Urban Mobility

Urban Energy Systems and Policy 11.165 **Total Units** 57

- See the Environment & Sustainability Minor website (https:// environmentalsolutions.mit.edu/environment-sustainability-minor) for potential elective and core subject substitutions or additions.
- Not all subjects in the E&S Minor are offered every academic year, and some have prerequisites that are outside of the E&S Minor program. Please visit the MIT Subject Listing (http://student.mit.edu/catalog) for a current and comprehensive list of offered classes.
- If a subject is counted towards a core area of study, it cannot also count as an elective.
- Up to two Terrascope (https://terrascope.mit.edu) subjects may count towards the E&S Minor.

A minimum of four subjects (or 48 units) taken for the Environment and Sustainability minor cannot also count toward a student's major or other minor. In other words, only one subject that counts toward a student's major or other minor degree may also count toward the E&S Minor elective requirement.

There are no restrictions on the number of subjects that may count towards a student's HASS Concentration and the E&S Minor. A student may petition to have a subject that is not listed on the electives listing count towards the E&S Minor.

For more information, contact Sarah Meyers (smeyers@mit.edu), Education Program Manager at the MIT Environmental Solutions Initiative (ESI) or visit the ESI education website (https:// environmentalsolutions.mit.edu/environment-sustainability-minor).